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1. FIELDS

Definition 1. A field is a set F' together with operations
+:FxF—Fand-: FxF—F
satisfying
(F1) a+b=">b+ a for every a,b € F}
(F2) (a+b)+c=a+ (b+c) for every a,b,c € F}
(F3) there exists 0p € F such that a + 0p = a for every a € F;
(F4) for every a € F there exists b € F such that a +b = 0p;
(F5) ab = ba for every a,b € F;
(F6) (ab)c = a(bc) for every a,b,c € F;
(F7) there exists 1p € F such that a-1p = a for every a € F;
(F8) for every a € F'~ {Op} there exists ¢ € F such that ac = 1p;
(F9) a(b+ c) = ab+ ac for every a,b,c € F;
Definition 2. Let F be a field. A subfield of F' is a subset S C F' such that
(S0) 1€ S;
(S1) a,beS=a+bes;
(S2) ae S= —a€esS;
(83) a,be S=abe S;
(S4)ae S=a'tes.
If S is a subfield of F', we write S < F.

Remark 1. Properties (S0) through (S4) imply that a subfield of F' is a subset
of F which is itself a field.

Problem 1. Let F be a field and 8 be a collection of subfields of F.

Show that NS < F.

Definition 3. Let A C F. The subfield of F generated by A, denoted by gf - (A),
is the intersection of all subfields of F' which contain A.

If S is a subfield of F and A C F. let S(A) denote the subfield of F' generated
by SUA. If A={ay,...,a,} is finite, let S(aq,...,a,) = S(A). In particular,
ifa e F,let S(a) =S({a}).

Remark 2. Every subfield of C contains @Q, so every subfield generated by a
subset of C contains Q.

Example 1. Let a = V2. Then
Qo) ={a+ba]a,beQ}.
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2. POLYNOMIALS

Definition 4. Let F be a field. A polynomial over F' is a function f : F — F
of the form

f(X) =ag+ a1 X +a2X2 =+ —i—aan,
where n is a nonnegative integer and a; € F for i = 1,...,n, with a,, # 0 (unless
f(X) =0). We call the variable X an indeterminate.

The number n is called the degree of f, and is denoted by deg(f), The elements
a; are called the coefficients of f.

The number a,, is called the leading coefficient. We say that f is monic if
a, = 1.

The element ag is called the constant coefficient. The polynomials of degree
zero are called constants, and are identified with the elements of the field F'. By
convention, deg(0) = —oo.

The set F[X] is closed under addition, subtraction, and multiplication.

Proposition 1 (Division Algorithm for Polynomials). Let F' be a field and let
fyg € F[X]. Then there exist polynomials q,r € F[X] such that

g=qf +r such that deg(r) < deg(f).

If f and g are monic, then q and r may be chosen to be monic or zero.

Proof. Without loss of generality, assume that f and g are monic. Let
S={h e F[X]|h=g-—qf for some monic ¢ € F[X]}.

Clearly S is nonempty; let » € S be a polynomial of minimal degree in .S, so
that r = g — qf for some monic ¢ € F[X]. Then g = qf + r.

We claim that deg(r) < deg(f), To see this, let k = deg(r) — deg(f), and
assume that £ > 0. Then X* € F[X],and h=7r - X*f=g— (¢ — X*)f € Sis
a monic polynomial of degree less than that of r, contradicting the selection of
. (]

Definition 5. Let F be a field and let f,g € F[X] We say that g is divisible by
f, or that f is a factor of g, or that f divides g, and write f | g, if there exists
k € F[X] such that g = fk. We see that f divides g if and only if the remainder
upon division of g by fis r = 0.

Definition 6. Let F be a field, f € F[X], and « € F. If a € F, we say that «

is a zero of f if f(a) = 0. In this case, we say that f annihilates a.

Proposition 2 (Remainder Theorem). Let F be a field, f € F[X], and a € F.
Let h(X) = (X — ) € F[X]. Write f = hqg+ r, where deg(r) < deg(h). Then
reF, and f(a) =r.

Proposition 3 (Factor Theorem). Let F' be a field, f € F[X], and « € F. Let
MX)= (X —a) € F[X]. Then h| f if and only if f(a) =0.

Proposition 4. Let F be a field and let « € F. Suppose that g = fq for some
f,9,q € F[X], and that g(a) = 0. Then either f(a) =0 or g(a) = 0.
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Definition 7. Let f,g € F[X]. A greatest common divisor of m and n, denoted
ged(m,n), is a monic d € F[X] such that

(a) d| fand d|g;

(b) If e| f and e | g, then e | d.

Proposition 5 (Euclidean Algorithm for Polynomials). Let f,g € F[X]. Then
there exists d € F[X] such that d = ged(m,n), and there exist s,t € F[X]| such
that

d=sf+1g.
If f and g are monic, we may choose s and t to be monic.

Proof. Without loss of generality, assume that f and g are monic. Let
S ={h € F[X]| h=sf+ tg for some monic s,t € F[X]}.

Clearly S is nonempty; select d € S of minimal degree, so that d = sf + tg for
some monic s,t € F[X].

Now f = qd + r for some monic ¢,r € F[X] with deg(r) < deg(d). Then
f=q(sf+tg)+r,sor=(1—gqs)f +(qt)g € S. If r is nonzero, this contradicts
the selection of d; thus r = 0, which shows that d | f. Similarly, d | g.

Ife| fand e | g, then f = ke and g = le for some k,l € F[X]. Then
d = ske + tle = (sk + tl)e. Therefore e | d. This shows that d = ged(m,n). O

Definition 8. Let F' be a field and let f € F[X]. We say that f is irreducible
over F if whenever f = gh for some g, h € F[X], either deg(g) = 1 or deg(h) = 1.

Example 2. If deg(f) € {2, 3}, then f is irreducible over F' if and only if f has
no zero in F'.

3. FIELD EXTENSIONS

Definition 9. A field extension E/F consists of a field E which contains a field
F.

Definition 10. Let E/F be a field extension, and let « € E. We say that
« is algebraic over F if there exists a nonzero polynomial f € F[X] such that
f(a) =0. Otherwise, we say that « is transcendental over F.

Proposition 6. Let E/F be a field extension and let « € E be algebraic over
F. Then there exists a unique monic irreducible polynomial f € F[X] such that
f(a) =0.

Proof. Since « is algebraic over F, there exists some polynomial in F[X] which
annihilates . Let f € F[X] be a nonzero polynomial of minimal degree which
annihilates a. Clearly f is irreducible, since it is of minimal degree. We may
divide by the leading coefficient to see that we may select f to be monic. Now
suppose that g is another monic polynomial of minimal degree which annihilates
. We have deg(f) = deg(g). Then deg(f — g) < deg(f) = deg(g). Since f is of
minimal degree among nonzero polynomials which annihilate «, we must have
f—9=0. Thus f = g, and f is unique. O

Definition 11. Let E/F be a field extension and let o € E be algebraic over
F. The minimum polynomial of o over F, denoted minpoly(«/F), is the unique
monic irreducible polynomial which annihilates «. The degree of a over F|,
denoted deg(a/F), is equal to deg(minpoly(a/F)).
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Definition 12. Let E/F be a field extension and let & € E. The evaluation map
on F[X] with respect to « is the function 9, : F[X] — E defined by f +— f(«).
The image of the evaluation map is denoted F[a]; that is,

k
Fla] = ¢u(F[X]) = {Zaiof |keN,a; € F} CE.
=0

Proposition 7. Let E/F be a field extension and let « € E. If v is transcen-
dental over F if and only if v, is injective.

Proof. Suppose that « is transcendental. Let f,g € F[X] so that f(«) and g(«)
are arbitrary members of F[a]. Suppose that f(«) = g(a); then (f — g)(a) =0,
so (f — g) is a polynomial which annihilates «. Since « is transcendental, we
must have f —g=0,s0 f =g.

On the other hand, if « is not transcendental, it is algebraic; let f =
minpoly(a/F). Then ¢, (f) = 14(0), and 1, is not injective. O

Proposition 8. Let E/F be a field extension and let « € E. Let Fla] =
Yo (F[X]) denote the image of F[X] under the evaluation map. Let « is algebraic
over F' and deg(a/F) = n, then Fla] = S, where

n—1
S = {Zaio/ | a; GF};
i=0
moreover, Fla] is a field, and Fla] = F(a).

Proof. Clearly all elements of the form Z?;ol a;a’ are in Fla], so S C F[a].

Let f € F[X] be the minimum polynomial of « over F. Let g € F[X]; then
g(a) is an arbitrary member of Fla]. Now ¢g(X) = f(X)q(X) + r(X), where
deg(r) < deg(f). By the remainder theorem, g(a) = f(a)q(a)+r(a) = r(a) € S.

Since F[X] is closed under addition, subtraction, and multiplication, so is
Fla]. We only need to show that f(«) if invertible for f(a) # 0.

Let 8 € Fla]. Then 3 = g(«) for some g € F[X]; by the division algorithm,
we may select g so that deg(g) < deg(f). Since f is irreducible, we see that
ged(f, g) = 1, so there exist s, ¢ € F[X] such that sf+tg = 1. Then t(a)g(a) = 1,
so 7t =t(a), and 3 is invertible. O



4. VECTOR SPACES

Definition 13. Let F be a field. A vector space over F' is a set V together with
operations
+:VxV -V and-: FxV -V

satisfying

(V1) v+w=w+v forall v,w € V;

(V2) v+ (w+2z) = (v+w) + a for all v,w,z € V;

(V3) there exists Oy € V such that v+ 0y = v for all v € V;

(V4) for every v € V there exists w € V such that v + w = Oy;

(V5) 1p-v = for every v € V;

(V6) (ab)v = a(bv) for every v € V and a,b € F;

(V7)) (a+b)v=av+bv for every v € V and a,b € F.

(V8) a(v+w) = av + aw for every v,w € V and a € F;

Problem 2. Let V be a vector space over a field F. Let a € Fand z € V.
(a) Show that Op - z = Oy.

(b) Show that a - 0y = Oy.

(c) Show that (—1p) -z = —uz.

Definition 14. Let V be a vector space over a field F'.
A subspace of V' is a subset W C V such that
(WO) 0y € W;
Wl) z,yeW=z+yecW;
(W2)aeFzeW=axeW.
If W is a subspace of V, this is denoted by W < V.

Remark 3. Properties (WO0) through (W2) imply that a subspace of V is a
subset of V' which is itself a vector space.

Problem 3. Let V be a vector space over a field F' and let W be a collection of
subspaces of V.
Show that "W < V.

Definition 15. Let V be a vector space over a field F' and let A C V. The
subspace of V' generated by A, denoted gvy,(A), the intersection of all subspaces
of V which contain A. This subspace is called the span of A.

Problem 4. Let V be a vector space over a field F' and let A = {vq,...,v,}.
Show that

gvy (A) = {iaivi | a; € F}
i=1



5. VECTOR SPACE DIMENSION

Definition 16. Let V' be a vector space over a field F'. Let B C V.

We say that B spans V is for every x € V there exist ay,...,a, € F and
v1,...,0, € B such that x = Y"" | a;v;.

We say that B is linearly independent if whenever vy, ..., v, € B are distinct
elements of B and ay,...,a, € F,

n
Zaivi:0:>ai=0fori:1,...,n.
i=1

We say that B is a basis for V if B spans V' and is linearly independent.

Problem 5. Let V' be a vector space over a field F' and let X C V span V.
Show that V = gvy, (X).

Problem 6. Let V' be a vector space over a field F' and let X C V be linearly
independent. Let v € X. Show that gvy (X ~{v}) is a proper subset of gvy (X).

Problem 7. Let V be a vector space over a field F' and let X C V span V.
Show that there exists a subset B C X such that B is a basis for V.

Problem 8. Let V be a vector space over a field F' and let X C V be linearly
independent. Show that there exists a subset Y C V such that X UY is a basis
for V.

Problem 9. Let V be a vector space over a field F. Let A = {vy,...,v,,} and
B = {wi,...,w,} be bases for V. Show that m = n.

Definition 17. Let V be a vector space over a field F'. If V has a basis containing
n elements, where n € N, we say that V is finite dimensional, and that n is the
dimension of V; this is denoted by dim(V') = n.

Problem 10. Let V be a vector space over a field F and let U, W < V. Set
U+W={u+w|uelUweW}

(a) Show that U+ W < V.

(b) Show that dim(U + W) = dim(U) + dim(W) — dim(U N W).

Problem 11. Let F be a field and let n be a positive integer. Let F™ denote
the cartesian product of F' with itself n times. Show that F™ is a vector space
over F' of dimension n.

Observation 1. Let E/F be a field extension. We may add the elements of F,
and multiply them by elements of F'. In this way, we may view E as a vector
space over F'.

Definition 18. Let E/F be a field extension. The degree of the extension,
denoted [E : F, is its dimension of E as a vector space over F.



6. TYPES OF EXTENSIONS

Definition 19. Let E/F be a field extension.

We say that E/F is a primitive extension if E = F[a] for some o € E which
is algebraic over F'.

We say that E/F is a finite extension if [E : F| < oco.

We say that E/F is a algebraic extension if every element of FE is algebraic
over F'.

Proposition 9. Let E/F be a primitive extension such that E = F|a], where «
is algebraic over F with minpoly(a/F) = f € F[X]. Let n = deg(f). Then the
set

B={1,a,...,a" '}
is a basis for E/F, and in particular, [E : F| = n.
Proof. Since E = F[a], that B spans E is a direct consequence of Proposition
??. To see that B is linearly independent, let

ap-l+aa+- - +a,a” =0

be a dependence relation. Then « is a root of the polynomial Z?;ll a; X", Since
this polynomial has lower degree than f, it must be the zero polynomial, so
a; = 0 for every i. This shows that B is linearly independent over F'. U

Proposition 10. Let E/F be a finite extension. Then E/F is an algebraic
extension.

Proof. Let [E : F] =n, and let « € E. The set S = {1,a,a?,...,a"} contains
n + 1 elements, and so it must be linearly dependent over F'. Thus there exists
a nontrivial dependence relation

ay-1+aa+---+a,a™ =0.
Let f(X)=ap+a1X +...a,X". Then f(a) =0, so « is algebraic over F. [
Proposition 11. Let K/E and E/F be finite field extensions of dimension n
and m respectively. If {z1,...,2n} s a basis for K/E and {y1,...,Ym} s a

basis for K/F, then {y;z; |i=1,...,m; j=1,...,n} is a basis for K/F. In
particular, K/F is finite, and

[K:F|=|[K:E]E:F|.

Proof. Let o € K. Then « is in the span of {z;}, so a = 22‘;1 b;z; for some
b; € E. Since each b; € F, it is in the span of {y;}, so b; = > i", a;;y; for some

a;; € F. Thus
o= Z [Zaijyi]zj =

j=1 i=1 j

QijYiZj-
1

n m
=1 i=
Thus {y;z;} spans K.

Now consider a dependence relation 2?21 Yo i=1"a;jy;z; = 0. Collect like

terms to obtain Y7, {221 aijyz} zj = 0. Since {z;} is linearly independent,

we must have Y., a;;y; = 0 for every j. But since {y;} is linearly independent,
this implies that a;; = 0 for every ¢ and j. Thus {y;2;} is linearly independent
over F'. (]



7. FIELD OF CONSTRUCTIBLE NUMBERS

Definition 20. Let S C C and set z € C. We say that a line L C C is
constructible from S if L NS contains at least two points. We say that a circle
C C C is constructible from S if the center of C'is in S and C'N S is nonempty.
We say a point z € C is constructible from S if one of the following conditions
holds:
(CO) z € S;
(C1) z € Ly N Ly, where L; and Lo are lines constructible from S;
(C2) 2z € Ly NCy, where Ly is a line and C] is a circle constructible from S;
(C83) z € C; NCy, where Cy and Cy are circles constructible from S.
Let C(S) be the set of points which are constructible from S.
Set Cy(S) = S and inductively set Cy,1(S) = C(Cr(5)). Let S ={0,1} € C,
and define
K = U oCo(S);
members of K are called constructible numbers.

Proposition 12. Let a,b € K. Then

(K1) a+beK;

(K2) —a eK;

(K3) ab e K;

(K4) a7t €K ifa #0;

(K5) ++va €eK;

(K6) a e K;
Thus the set K is a subfield of C which is closed under square roots and conju-
gation.

Proof. Note that a+b is the fourth point in a parallelogram with points a, 0, and
b; we have seen that this construction is possible. Also, —a is the intersection
of the line through 0 and a with the circle centered at 0 through a, so —a is
constructible.

Let a = re'® be the polar expression of a. Now r = |a|; this may be constructed
by intersecting the real axis with the circle centered at 0 through a.

Now let a = re?® and b = se'”; then ab = rse’(®+7). We have seen that if we
can construct lengths r and s, then we can construct the length rs. We only
need to show that we can construct the angle 6 4+ . Try to do this geometri-
cally; otherwise it will follow algebraically from the similar facts for the real and
imaginary parts of a and b.

Next we describe how to construct the conjugate @ of a. Form the line per-
pendicular to the real axis and passing through a. Intersect this line with the
circle centered at 0 through a. One point of intersection is a, the other is @.

Consider that a=! = %e‘ia. We have seen that we can construct %, and we
can bisect any angle. Thus a~! € K. (]



Proposition 13. Let z € C. Then z € K if and only if Rz € K and 3z € K.
In particular, i is constructible.

Proof. Note that the real axis is immediately constructible from {0,1}, and the
imaginary axis is constructible as the perpendicular to the real axis through 0.

Suppose that z € K. Then |z| is the positive real number obtained as the
intersection of real line and the circle centered at 0 and through z. Then |z|?

2
is constructible since K is a field, and since 2z = |z|?, we see that z = %
is constructible. Thus Rz = 1(z + %) is constructible, and Sz = z — Rz is
constructible.

Suppose that Rz and Jz are constructible. Now i is the intersection of the
unit circle and the imaginary axis, so ¢ is constructible. Thus z = Rz + iz is
constructible. 0

8. CONSTRUCTED FIELDS

Definition 21. Let z = (21, ..., 2,) be an n-tuple of complex numbers. We say
that z is constructed if z; = i and z;41 € C(Q[z1,...,2i]) for i = 1,...,n. If
F < C, we say that F is constructed if F = C[zy,...,z2,] for some constructed

tuple (z1,...,25,).

Proposition 14. Let F < C and z € C. Suppose i € F. Then z € F if and
only if Rz,3z € F. In this case, Z € F and |z|* € F.

Proof. Let z = x + iy, where x,y € R. If x,y,7 € F, then obviously z € F.
Suppose z,i € F; then z —iz € F. Now z —iz = (x —iz) — (y — iy) = (z —

y)(1—1). Sincei € F,1—i € F,sox—y € F. Now (x—y)—2z = y—iy = y(1—1),

soye F. Thusz € F. Nowz=x2—iy€ F,s0 |z|>=2z€ F. O

Proposition 15. If a € K, then there exists a constructed tuple (z1,...,2n)
such that o = z,,.

Proof. Tt follows from the definition of constructibility that o can be constructed
from finitely many stages from the set {0,1} C Q. The result follows from
this. (]

Proposition 16. Let E/F be a field extension with [E : F] =n, and let o« € E.
Then deg(a/F) divides n.

Proof. We know that [Fla] : F] = deg(a/F) = deg(minpoly(a/F)). By the
product of degrees formula, [E : F| = [E : Fla]] - [F[a] : F]. The result follows.
O
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Proposition 17. Let E be a constructed field. Then [E : Q] is a power of two.

Proof. Since E is a constructed field, there exists a constructed tuple (z1,. .., 25 ),
with z; = 4, such that E = Q[z21,. .., 2,], with z;41 € Q[z1,..., 2].

Let F; = Q[z1,...,2;) fori =1,...,n; note E = F,,. We proceed by induction
on n.

For n = 1, we have z; = 4. Now minpoly(i/Q) = X2 + 1, and deg(z1/Q) = 2,
so the proposition is true in this case.

Now suppose that n > 1, and let F' = F,_; and a = z,. By induction,
[F: Q] is a power of two. We also know that ¢ € F, so z € F if and only if
Rz,32,7, |2|? € F.

Since « is constructible from F, it is the intersection of lines and circles given
by points in F'.

Case 1: « is the point of intersection of two lines given by F.

Note that the slope of a line through two points in F' is also in F’; let y = mjx+by

and y = mox + bo be lines which intersect at «, where mq, by, mo, by € F. Then

the point of intersection is the complex number o = —22=bL 4 miba=bima; w550
mi—mso mi—mso

real and imaginary parts are in F', so a € F' in this case, and deg(a/F) = 1.

Case 2: « is a point of intersection of a line and a circle given by F'.

Let y = mx + b and (z — h)? + (y — k)? = 72 be the equations of the line and
the circle. Now m,b € F. Since w = h + ki is the center of the circle, h, k € F.
Also there exists a point z € C whose distance from w is r, so r = |w — z| € F.
Substitution gives (z —h)? + (mz +b— k)? —r? = 0; this is a quadratic equation
whose solution is of the form & = A+ Bv/D, where A, B, D € F. Let y = max+b;
now o = x + yi, and since z,y € F[v/D], so is o

Case 3: « is a point of intersection of two circles given by F'.

Subtracting the equations of the circles cancels both the x2 and the 3? terms,
producing a linear equation in x and y. Use this in combination with the equation
of one of the circles to reduce to Case 2. (|

Proposition 18. Let a € C be constructible. Then there exist p € N such that
deg(minpoly(a/Q)) = 2P.

Proof. If « is constructible, there exists a constructed tuple (z1,...,2,) such
that o = z,. Let E = Q[z1,...,2y,]; then a € E and [E : F] is a power of two.
By a previous proposition, deg(«/Q) divides [E : FJ, so it is also a power of
two. O

Proposition 19. [t is impossible to double a cube.

Proof. Start with a cube whose sides have length one. To construct a cube with
double the volume, one must be able to construct an edge of this cube; this
requires the constructibility of the number o = /2.

The minimum polynomial of « over Q is X? — 2, so deg(a,/Q) = 3. Since 3 is
not a power of 2, « is not constructible. O
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