HISTORY OF MATHEMATICS MATHEMATICAL TOPIC X FIELDS

PAUL L. BAILEY

1. Fields

Definition 1. A *field* is a set F together with operations

 $+: F \times F \to F$ and $\cdot: F \times F \to F$

satisfying

(F1) a+b=b+a for every $a,b\in F$;

(F2) (a+b) + c = a + (b+c) for every $a, b, c \in F$;

(F3) there exists $0_F \in F$ such that $a + 0_F = a$ for every $a \in F$;

(F4) for every $a \in F$ there exists $b \in F$ such that $a + b = 0_F$;

(F5) ab = ba for every $a, b \in F$;

(F6) (ab)c = a(bc) for every $a, b, c \in F$;

(F7) there exists $1_F \in F$ such that $a \cdot 1_F = a$ for every $a \in F$;

- (F8) for every $a \in F \setminus \{0_F\}$ there exists $c \in F$ such that $ac = 1_F$;
- (F9) a(b+c) = ab + ac for every $a, b, c \in F$;

Definition 2. Let F be a field. A *subfield* of F is a subset $S \subset F$ such that **(S0)** $1 \in S$;

(S1) $a, b \in S \Rightarrow a + b \in S;$

(S2) $a \in S \Rightarrow -a \in S;$

(S3) $a, b \in S \Rightarrow ab \in S;$

(S4) $a \in S \Rightarrow a^{-1} \in S$.

If S is a subfield of F, we write $S \leq F$.

Remark 1. Properties (S0) through (S4) imply that a subfield of F is a subset of F which is itself a field.

Problem 1. Let *F* be a field and S be a collection of subfields of *F*. Show that $\cap S \leq F$.

Definition 3. Let $A \subset F$. The subfield of F generated by A, denoted by $gf_F(A)$, is the intersection of all subfields of F which contain A.

If S is a subfield of F and $A \subset F$. let S(A) denote the subfield of F generated by $S \cup A$. If $A = \{\alpha_1, \ldots, \alpha_n\}$ is finite, let $S(\alpha_1, \ldots, \alpha_n) = S(A)$. In particular, if $a \in F$, let $S(a) = S(\{a\})$.

Remark 2. Every subfield of \mathbb{C} contains \mathbb{Q} , so every subfield generated by a subset of \mathbb{C} contains \mathbb{Q} .

Example 1. Let $\alpha = \sqrt{2}$. Then

$$\mathbb{Q}(\alpha) = \{a + b\alpha \mid a, b \in \mathbb{Q}\}.$$

Date: December 13, 2004.

2. Polynomials

Definition 4. Let F be a field. A polynomial over F is a function $f: F \to F$ of the form

 $f(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n,$

where n is a nonnegative integer and $a_i \in F$ for i = 1, ..., n, with $a_n \neq 0$ (unless f(X) = 0). We call the variable X an *indeterminate*.

The number n is called the *degree* of f, and is denoted by deg(f), The elements a_i are called the *coefficients* of f.

The number a_n is called the *leading coefficient*. We say that f is *monic* if $a_n = 1$.

The element a_0 is called the *constant coefficient*. The polynomials of degree zero are called *constants*, and are identified with the elements of the field F. By convention, $\deg(0) = -\infty$.

The set F[X] is closed under addition, subtraction, and multiplication.

Proposition 1 (Division Algorithm for Polynomials). Let F be a field and let $f, g \in F[X]$. Then there exist polynomials $q, r \in \mathbb{F}[X]$ such that

g = qf + r such that $\deg(r) < \deg(f)$.

If f and g are monic, then q and r may be chosen to be monic or zero.

Proof. Without loss of generality, assume that f and g are monic. Let

 $S = \{h \in F[X] \mid h = g - qf \text{ for some monic } q \in F[X]\}.$

Clearly S is nonempty; let $r \in S$ be a polynomial of minimal degree in S, so that r = g - qf for some monic $q \in F[X]$. Then g = qf + r.

We claim that $\deg(r) < \deg(f)$, To see this, let $k = \deg(r) - \deg(f)$, and assume that $k \ge 0$. Then $X^k \in F[X]$, and $h = r - X^k f = g - (q - X^k) f \in S$ is a monic polynomial of degree less than that of r, contradicting the selection of r.

Definition 5. Let F be a field and let $f, g \in F[X]$ We say that g is *divisible* by f, or that f is a *factor* of g, or that f *divides* g, and write $f \mid g$, if there exists $k \in F[X]$ such that g = fk. We see that f divides g if and only if the remainder upon division of g by f is r = 0.

Definition 6. Let F be a field, $f \in F[X]$, and $\alpha \in F$. If $\alpha \in F$, we say that α is a zero of f if $f(\alpha) = 0$. In this case, we say that f annihilates α .

Proposition 2 (Remainder Theorem). Let F be a field, $f \in F[X]$, and $\alpha \in F$. Let $h(X) = (X - \alpha) \in F[X]$. Write f = hq + r, where $\deg(r) < \deg(h)$. Then $r \in F$, and $f(\alpha) = r$.

Proposition 3 (Factor Theorem). Let F be a field, $f \in F[X]$, and $\alpha \in F$. Let $h(X) = (X - \alpha) \in F[X]$. Then $h \mid f$ if and only if $f(\alpha) = 0$.

Proposition 4. Let F be a field and let $\alpha \in F$. Suppose that g = fq for some $f, g, q \in F[X]$, and that $g(\alpha) = 0$. Then either $f(\alpha) = 0$ or $q(\alpha) = 0$.

Definition 7. Let $f, g \in F[X]$. A greatest common divisor of m and n, denoted gcd(m, n), is a monic $d \in F[X]$ such that

(a) $d \mid f$ and $d \mid g$;

(b) If $e \mid f$ and $e \mid g$, then $e \mid d$.

Proposition 5 (Euclidean Algorithm for Polynomials). Let $f, g \in F[X]$. Then there exists $d \in F[X]$ such that d = gcd(m, n), and there exist $s, t \in F[X]$ such that

$$d = sf + tg.$$

If f and g are monic, we may choose s and t to be monic.

Proof. Without loss of generality, assume that f and g are monic. Let

 $S = \{h \in F[X] \mid h = sf + tg \text{ for some monic } s, t \in F[X]\}.$

Clearly S is nonempty; select $d \in S$ of minimal degree, so that d = sf + tg for some monic $s, t \in F[X]$.

Now f = qd + r for some monic $q, r \in F[X]$ with $\deg(r) < \deg(d)$. Then f = q(sf + tg) + r, so $r = (1 - qs)f + (qt)g \in S$. If r is nonzero, this contradicts the selection of d; thus r = 0, which shows that $d \mid f$. Similarly, $d \mid g$.

If $e \mid f$ and $e \mid g$, then f = ke and g = le for some $k, l \in F[X]$. Then d = ske + tle = (sk + tl)e. Therefore $e \mid d$. This shows that d = gcd(m, n). \Box

Definition 8. Let F be a field and let $f \in F[X]$. We say that f is *irreducible* over F if whenever f = gh for some $g, h \in F[X]$, either $\deg(g) = 1$ or $\deg(h) = 1$.

Example 2. If $\deg(f) \in \{2, 3\}$, then f is irreducible over F if and only if f has no zero in F.

3. FIELD EXTENSIONS

Definition 9. A field extension E/F consists of a field E which contains a field F.

Definition 10. Let E/F be a field extension, and let $\alpha \in E$. We say that α is *algebraic* over F if there exists a nonzero polynomial $f \in F[X]$ such that $f(\alpha) = 0$. Otherwise, we say that α is *transcendental* over F.

Proposition 6. Let E/F be a field extension and let $\alpha \in E$ be algebraic over F. Then there exists a unique monic irreducible polynomial $f \in F[X]$ such that $f(\alpha) = 0$.

Proof. Since α is algebraic over F, there exists some polynomial in F[X] which annihilates α . Let $f \in F[X]$ be a nonzero polynomial of minimal degree which annihilates α . Clearly f is irreducible, since it is of minimal degree. We may divide by the leading coefficient to see that we may select f to be monic. Now suppose that g is another monic polynomial of minimal degree which annihilates α . We have deg(f) = deg(g). Then deg(f - g) < deg(f) = deg(g). Since f is of minimal degree among nonzero polynomials which annihilate α , we must have f - g = 0. Thus f = g, and f is unique. \Box

Definition 11. Let E/F be a field extension and let $\alpha \in E$ be algebraic over F. The minimum polynomial of α over F, denoted minpoly (α/F) , is the unique monic irreducible polynomial which annihilates α . The degree of α over F, denoted deg (α/F) , is equal to deg $(\min poly(\alpha/F))$.

Definition 12. Let E/F be a field extension and let $\alpha \in E$. The evaluation map on F[X] with respect to α is the function $\psi_{\alpha} : F[X] \to E$ defined by $f \mapsto f(\alpha)$. The image of the evaluation map is denoted $F[\alpha]$; that is,

$$F[\alpha] = \psi_{\alpha}(F[X]) = \left\{ \sum_{i=0}^{k} a_{i} \alpha^{i} \mid k \in \mathbb{N}, a_{i} \in F \right\} \subset E.$$

Proposition 7. Let E/F be a field extension and let $\alpha \in E$. If α is transcendental over F if and only if ψ_{α} is injective.

Proof. Suppose that α is transcendental. Let $f, g \in F[X]$ so that $f(\alpha)$ and $g(\alpha)$ are arbitrary members of $F[\alpha]$. Suppose that $f(\alpha) = g(\alpha)$; then $(f - g)(\alpha) = 0$, so (f - g) is a polynomial which annihilates α . Since α is transcendental, we must have f - g = 0, so f = g.

On the other hand, if α is not transcendental, it is algebraic; let $f = \text{minpoly}(\alpha/F)$. Then $\psi_{\alpha}(f) = \psi_{\alpha}(0)$, and ψ_{α} is not injective.

Proposition 8. Let E/F be a field extension and let $\alpha \in E$. Let $F[\alpha] = \psi_{\alpha}(F[X])$ denote the image of F[X] under the evaluation map. Let α is algebraic over F and $\deg(\alpha/F) = n$, then $F[\alpha] = S$, where

$$S = \left\{ \sum_{i=0}^{n-1} a_i \alpha^i \mid a_i \in F \right\};$$

moreover, $F[\alpha]$ is a field, and $F[\alpha] = F(\alpha)$.

Proof. Clearly all elements of the form $\sum_{i=0}^{n-1} a_i \alpha^i$ are in $F[\alpha]$, so $S \subset F[\alpha]$.

Let $f \in F[X]$ be the minimum polynomial of α over F. Let $g \in F[X]$; then $g(\alpha)$ is an arbitrary member of $F[\alpha]$. Now g(X) = f(X)q(X) + r(X), where $\deg(r) < \deg(f)$. By the remainder theorem, $g(\alpha) = f(\alpha)q(\alpha) + r(\alpha) = r(\alpha) \in S$.

Since F[X] is closed under addition, subtraction, and multiplication, so is $F[\alpha]$. We only need to show that $f(\alpha)$ if invertible for $f(\alpha) \neq 0$.

Let $\beta \in F[\alpha]$. Then $\beta = g(\alpha)$ for some $g \in F[X]$; by the division algorithm, we may select g so that $\deg(g) < \deg(f)$. Since f is irreducible, we see that $\gcd(f,g) = 1$, so there exist $s, t \in F[X]$ such that sf+tg = 1. Then $t(\alpha)g(\alpha) = 1$, so $\beta^{-1} = t(\alpha)$, and β is invertible. \Box

4. Vector Spaces

Definition 13. Let F be a field. A *vector space* over F is a set V together with operations

$$+: V \times V \to V$$
 and $\cdot: F \times V \to V$

satisfying

(V1) v + w = w + v for all $v, w \in V$;

(V2) v + (w + x) = (v + w) + x for all $v, w, x \in V$;

(V3) there exists $0_V \in V$ such that $v + 0_V = v$ for all $v \in V$;

(V4) for every $v \in V$ there exists $w \in V$ such that $v + w = 0_V$;

(V5) $1_F \cdot v = v$ for every $v \in V$;

(V6) (ab)v = a(bv) for every $v \in V$ and $a, b \in F$;

(V7) (a+b)v = av + bv for every $v \in V$ and $a, b \in F$.

(V8) a(v+w) = av + aw for every $v, w \in V$ and $a \in F$;

Problem 2. Let V be a vector space over a field F. Let $a \in F$ and $x \in V$.

(a) Show that $0_F \cdot x = 0_V$.

(b) Show that $a \cdot 0_V = 0_V$.

(c) Show that $(-1_F) \cdot x = -x$.

Definition 14. Let V be a vector space over a field F.

A subspace of V is a subset $W \subset V$ such that

(W0) $0_V \in W;$

(W1) $x, y \in W \Rightarrow x + y \in W;$

(W2) $a \in F, x \in W \Rightarrow ax \in W$.

If W is a subspace of V, this is denoted by $W \leq V$.

Remark 3. Properties (W0) through (W2) imply that a subspace of V is a subset of V which is itself a vector space.

Problem 3. Let V be a vector space over a field F and let \mathcal{W} be a collection of subspaces of V.

Show that $\cap \mathcal{W} \leq V$.

Definition 15. Let V be a vector space over a field F and let $A \subset V$. The subspace of V generated by A, denoted $gv_V(A)$, the intersection of all subspaces of V which contain A. This subspace is called the *span* of A.

Problem 4. Let V be a vector space over a field F and let $A = \{v_1, \ldots, v_n\}$. Show that

$$\operatorname{gv}_V(A) = \Big\{ \sum_{i=1}^n a_i v_i \mid a_i \in F \Big\}.$$

5. Vector Space Dimension

Definition 16. Let V be a vector space over a field F. Let $B \subset V$.

We say that B spans V is for every $x \in V$ there exist $a_1, \ldots, a_n \in F$ and $v_1, \ldots, v_n \in B$ such that $x = \sum_{i=1}^n a_i v_i$.

We say that B is *linearly independent* if whenever $v_1, \ldots, v_n \in B$ are distinct elements of B and $a_1, \ldots, a_n \in F$,

$$\sum_{i=1}^{n} a_i v_i = 0 \Rightarrow a_i = 0 \text{ for } i = 1, \dots, n.$$

We say that B is a *basis* for V if B spans V and is linearly independent.

Problem 5. Let V be a vector space over a field F and let $X \subset V$ span V. Show that $V = gv_V(X)$.

Problem 6. Let V be a vector space over a field F and let $X \subset V$ be linearly independent. Let $v \in X$. Show that $gv_V(X \setminus \{v\})$ is a proper subset of $gv_V(X)$.

Problem 7. Let V be a vector space over a field F and let $X \subset V$ span V. Show that there exists a subset $B \subset X$ such that B is a basis for V.

Problem 8. Let V be a vector space over a field F and let $X \subset V$ be linearly independent. Show that there exists a subset $Y \subset V$ such that $X \cup Y$ is a basis for V.

Problem 9. Let V be a vector space over a field F. Let $A = \{v_1, \ldots, v_m\}$ and $B = \{w_1, \ldots, w_n\}$ be bases for V. Show that m = n.

Definition 17. Let V be a vector space over a field F. If V has a basis containing n elements, where $n \in \mathbb{N}$, we say that V is *finite dimensional*, and that n is the *dimension* of V; this is denoted by $\dim(V) = n$.

Problem 10. Let V be a vector space over a field F and let $U, W \leq V$. Set $U + W = \{u + w \mid u \in U, w \in W\}.$

(a) Show that $U + W \leq V$.

(b) Show that $\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$.

Problem 11. Let F be a field and let n be a positive integer. Let F^n denote the cartesian product of F with itself n times. Show that F^n is a vector space over F of dimension n.

Observation 1. Let E/F be a field extension. We may add the elements of E, and multiply them by elements of F. In this way, we may view E as a vector space over F.

Definition 18. Let E/F be a field extension. The *degree* of the extension, denoted [E:F], is its dimension of E as a vector space over F.

6. Types of Extensions

Definition 19. Let E/F be a field extension.

We say that E/F is a *primitive extension* if $E = F[\alpha]$ for some $\alpha \in E$ which is algebraic over F.

We say that E/F is a finite extension if $[E:F] < \infty$.

We say that E/F is a *algebraic extension* if every element of E is algebraic over F.

Proposition 9. Let E/F be a primitive extension such that $E = \mathbb{F}[\alpha]$, where α is algebraic over F with minpoly $(\alpha/F) = f \in F[X]$. Let $n = \deg(f)$. Then the set

$$B = \{1, \alpha, \dots, \alpha^{n-1}\}$$

is a basis for E/F, and in particular, [E:F] = n.

Proof. Since $E = F[\alpha]$, that B spans E is a direct consequence of Proposition **??**. To see that B is linearly independent, let

$$a_0 \cdot 1 + a_1 \alpha + \dots + a_n \alpha^{n-1} = 0$$

be a dependence relation. Then α is a root of the polynomial $\sum_{i=1}^{n-1} a_i X^i$. Since this polynomial has lower degree than f, it must be the zero polynomial, so $a_i = 0$ for every i. This shows that B is linearly independent over F.

Proposition 10. Let E/F be a finite extension. Then E/F is an algebraic extension.

Proof. Let [E:F] = n, and let $\alpha \in E$. The set $S = \{1, \alpha, \alpha^2, \dots, \alpha^n\}$ contains n + 1 elements, and so it must be linearly dependent over F. Thus there exists a nontrivial dependence relation

$$a_0 \cdot 1 + a_1 \alpha + \dots + a_n \alpha^n = 0.$$

Let $f(X) = a_0 + a_1 X + \ldots a_n X^n$. Then $f(\alpha) = 0$, so α is algebraic over F. \Box

Proposition 11. Let K/E and E/F be finite field extensions of dimension n and m respectively. If $\{z_1, \ldots, z_n\}$ is a basis for K/E and $\{y_1, \ldots, y_m\}$ is a basis for K/F, then $\{y_i z_j \mid i = 1, \ldots, m; j = 1, \ldots, n\}$ is a basis for K/F. In particular, K/F is finite, and

$$[K:F] = [K:E][E:F].$$

Proof. Let $\alpha \in K$. Then α is in the span of $\{z_j\}$, so $\alpha = \sum_{j=1}^n b_j z_j$ for some $b_j \in E$. Since each $b_j \in E$, it is in the span of $\{y_i\}$, so $b_j = \sum_{i=1}^m a_{ij} y_i$ for some $a_{ij} \in F$. Thus

$$\alpha = \sum_{j=1}^{n} \left[\sum_{i=1}^{m} a_{ij} y_i \right] z_j = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} y_i z_j.$$

Thus $\{y_i z_j\}$ spans K.

Now consider a dependence relation $\sum_{j=1}^{n} \sum_{i} i = 1^{m} a_{ij} y_{i} z_{j} = 0$. Collect like terms to obtain $\sum_{j=1}^{n} \left[\sum_{i=1}^{m} a_{ij} y_{i} \right] z_{j} = 0$. Since $\{z_{j}\}$ is linearly independent, we must have $\sum_{i=1}^{n} a_{ij} y_{i} = 0$ for every j. But since $\{y_{i}\}$ is linearly independent, this implies that $a_{ij} = 0$ for every i and j. Thus $\{y_{i} z_{j}\}$ is linearly independent over F.

7. FIELD OF CONSTRUCTIBLE NUMBERS

Definition 20. Let $S \subset \mathbb{C}$ and set $z \in \mathbb{C}$. We say that a line $L \subset \mathbb{C}$ is constructible from S if $L \cap S$ contains at least two points. We say that a circle $C \subset \mathbb{C}$ is constructible from S if the center of C is in S and $C \cap S$ is nonempty. We say a point $z \in \mathbb{C}$ is constructible from S if one of the following conditions holds:

(C0) $z \in S$;

(C1) $z \in L_1 \cap L_2$, where L_1 and L_2 are lines constructible from S;

(C2) $z \in L_1 \cap C_1$, where L_1 is a line and C_1 is a circle constructible from S;

(C3) $z \in C_1 \cap C_2$, where C_1 and C_2 are circles constructible from S.

Let C(S) be the set of points which are constructible from S.

Set $C_0(S) = S$ and inductively set $C_{n+1}(S) = C(C_n(S))$. Let $S = \{0, 1\} \in \mathbb{C}$, and define

$$\mathbb{K} = \bigcup_{n=0}^{\infty} C_n(S);$$

members of $\mathbb K$ are called *constructible numbers*.

Proposition 12. Let $a, b \in \mathbb{K}$. Then

(K1) $a + b \in \mathbb{K};$ (K2) $-a \in \mathbb{K};$ (K3) $ab \in \mathbb{K};$ (K4) $a^{-1} \in \mathbb{K}$ if $a \neq 0;$ (K5) $\pm \sqrt{a} \in \mathbb{K};$ (K6) $\overline{a} \in \mathbb{K};$

Thus the set \mathbb{K} is a subfield of \mathbb{C} which is closed under square roots and conjugation.

Proof. Note that a+b is the fourth point in a parallelogram with points a, 0, and b; we have seen that this construction is possible. Also, -a is the intersection of the line through 0 and a with the circle centered at 0 through a, so -a is constructible.

Let $a = re^{i\theta}$ be the polar expression of a. Now r = |a|; this may be constructed by intersecting the real axis with the circle centered at 0 through a.

Now let $a = re^{i\theta}$ and $b = se^{i\gamma}$; then $ab = rse^{i(\theta+\gamma)}$. We have seen that if we can construct lengths r and s, then we can construct the length rs. We only need to show that we can construct the angle $\theta + \gamma$. Try to do this geometrically; otherwise it will follow algebraically from the similar facts for the real and imaginary parts of a and b.

Next we describe how to construct the conjugate \overline{a} of a. Form the line perpendicular to the real axis and passing through a. Intersect this line with the circle centered at 0 through a. One point of intersection is a, the other is \overline{a} .

Consider that $a^{-1} = \frac{1}{r}e^{-i\theta}$. We have seen that we can construct $\frac{1}{r}$, and we can bisect any angle. Thus $a^{-1} \in \mathbb{K}$.

Proposition 13. Let $z \in \mathbb{C}$. Then $z \in \mathbb{K}$ if and only if $\Re z \in \mathbb{K}$ and $\Im z \in \mathbb{K}$. In particular, *i* is constructible.

Proof. Note that the real axis is immediately constructible from $\{0, 1\}$, and the imaginary axis is constructible as the perpendicular to the real axis through 0.

Suppose that $z \in \mathbb{K}$. Then |z| is the positive real number obtained as the intersection of real line and the circle centered at 0 and through z. Then $|z|^2$ is constructible since \mathbb{K} is a field, and since $z\overline{z} = |z|^2$, we see that $\overline{z} = \frac{|z|^2}{z}$ is constructible. Thus $\Re z = \frac{1}{2}(z + \overline{z})$ is constructible, and $\Im z = z - \Re z$ is constructible.

Suppose that $\Re z$ and $\Im z$ are constructible. Now *i* is the intersection of the unit circle and the imaginary axis, so *i* is constructible. Thus $z = \Re z + i\Im z$ is constructible.

8. Constructed Fields

Definition 21. Let $\mathbf{z} = (z_1, \ldots, z_n)$ be an *n*-tuple of complex numbers. We say that \mathbf{z} is *constructed* if $z_1 = i$ and $z_{i+1} \in C(\mathbb{Q}[z_1, \ldots, z_i])$ for $i = 1, \ldots, n$. If $F \leq \mathbb{C}$, we say that F is constructed if $F = \mathbb{C}[z_1, \ldots, z_n]$ for some constructed tuple (z_1, \ldots, z_n) .

Proposition 14. Let $F \leq \mathbb{C}$ and $z \in \mathbb{C}$. Suppose $i \in F$. Then $z \in F$ if and only if $\Re z, \Im z \in F$. In this case, $\overline{z} \in F$ and $|z|^2 \in F$.

Proof. Let z = x + iy, where $x, y \in \mathbb{R}$. If $x, y, i \in F$, then obviously $z \in F$. Suppose $z, i \in F$; then $z - iz \in F$. Now z - iz = (x - ix) - (y - iy) = (x - iz).

y)(1-i). Since $i \in F$, $1-i \in F$, so $x-y \in F$. Now (x-y)-z = y-iy = y(1-i), so $y \in F$. Thus $x \in F$. Now $\overline{z} = x - iy \in F$, so $|z|^2 = z\overline{z} \in F$. \Box

Proposition 15. If $\alpha \in \mathbb{K}$, then there exists a constructed tuple (z_1, \ldots, z_n) such that $\alpha = z_n$.

Proof. It follows from the definition of constructibility that α can be constructed from finitely many stages from the set $\{0,1\} \subset \mathbb{Q}$. The result follows from this.

Proposition 16. Let E/F be a field extension with [E:F] = n, and let $\alpha \in E$. Then $\deg(\alpha/F)$ divides n.

Proof. We know that $[F[\alpha] : F] = \deg(\alpha/F) = \deg(\min \operatorname{poly}(\alpha/F))$. By the product of degrees formula, $[E : F] = [E : F[\alpha]] \cdot [F[\alpha] : F]$. The result follows.

Proposition 17. Let E be a constructed field. Then $[E : \mathbb{Q}]$ is a power of two.

Proof. Since E is a constructed field, there exists a constructed tuple (z_1, \ldots, z_n) , with $z_1 = i$, such that $E = \mathbb{Q}[z_1, \ldots, z_n]$, with $z_{i+1} \in \mathbb{Q}[z_1, \ldots, z_i]$.

Let $F_i = \mathbb{Q}[z_1, \ldots, z_i]$ for $i = 1, \ldots, n$; note $E = F_n$. We proceed by induction on n.

For n = 1, we have $z_1 = i$. Now minpoly $(i/\mathbb{Q}) = X^2 + 1$, and $\deg(z_1/\mathbb{Q}) = 2$, so the proposition is true in this case.

Now suppose that n > 1, and let $F = F_{n-1}$ and $\alpha = z_n$. By induction, $[F : \mathbb{Q}]$ is a power of two. We also know that $i \in F$, so $z \in F$ if and only if $\Re z, \Im z, \overline{z}, |z|^2 \in F$.

Since α is constructible from F, it is the intersection of lines and circles given by points in F.

Case 1: α is the point of intersection of two lines given by F.

Note that the slope of a line through two points in F is also in F; let $y = m_1 x + b_1$ and $y = m_2 x + b_2$ be lines which intersect at α , where $m_1, b_1, m_2, b_2 \in F$. Then the point of intersection is the complex number $\alpha = \frac{b_2 - b_1}{m_1 - m_2} + \frac{m_1 b_2 - b_1 m_2}{m_1 - m_2} i$, whose real and imaginary parts are in F, so $\alpha \in F$ in this case, and $\deg(\alpha/F) = 1$.

Case 2: α is a point of intersection of a line and a circle given by F. Let y = mx + b and $(x - h)^2 + (y - k)^2 = r^2$ be the equations of the line and the circle. Now $m, b \in F$. Since w = h + ki is the center of the circle, $h, k \in F$. Also there exists a point $z \in \mathbb{C}$ whose distance from w is r, so $r = |w - z| \in F$. Substitution gives $(x - h)^2 + (mx + b - k)^2 - r^2 = 0$; this is a quadratic equation whose solution is of the form $x = A + B\sqrt{D}$, where $A, B, D \in F$. Let y = mx + b;

now $\alpha = x + yi$, and since $x, y \in F[\sqrt{D}]$, so is α .

Case 3: α is a point of intersection of two circles given by F.

Subtracting the equations of the circles cancels both the x^2 and the y^2 terms, producing a linear equation in x and y. Use this in combination with the equation of one of the circles to reduce to Case 2.

Proposition 18. Let $\alpha \in \mathbb{C}$ be constructible. Then there exist $p \in \mathbb{N}$ such that $deg(minpoly(\alpha/\mathbb{Q})) = 2^p$.

Proof. If α is constructible, there exists a constructed tuple (z_1, \ldots, z_n) such that $\alpha = z_n$. Let $E = \mathbb{Q}[z_1, \ldots, z_n]$; then $\alpha \in E$ and [E : F] is a power of two. By a previous proposition, $\deg(\alpha/\mathbb{Q})$ divides [E : F], so it is also a power of two.

Proposition 19. It is impossible to double a cube.

Proof. Start with a cube whose sides have length one. To construct a cube with double the volume, one must be able to construct an edge of this cube; this requires the constructibility of the number $\alpha = \sqrt[3]{2}$.

The minimum polynomial of α over \mathbb{Q} is $X^3 - 2$, so deg $(\alpha/\mathbb{Q}) = 3$. Since 3 is not a power of 2, α is not constructible.

DEPARTMENT OF MATHEMATICS AND CSCI, SOUTHERN ARKANSAS UNIVERSITY *E-mail address*: plbailey@saumag.edu

10