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1. Fields

Definition 1. A field is a set F together with operations

+ : F × F → F and · : F × F → F

satisfying
(F1) a+ b = b+ a for every a, b ∈ F ;
(F2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ F ;
(F3) there exists 0F ∈ F such that a+ 0F = a for every a ∈ F ;
(F4) for every a ∈ F there exists b ∈ F such that a+ b = 0F ;
(F5) ab = ba for every a, b ∈ F ;
(F6) (ab)c = a(bc) for every a, b, c ∈ F ;
(F7) there exists 1F ∈ F such that a · 1F = a for every a ∈ F ;
(F8) for every a ∈ F r {0F } there exists c ∈ F such that ac = 1F ;
(F9) a(b+ c) = ab+ ac for every a, b, c ∈ F ;

Definition 2. Let F be a field. A subfield of F is a subset S ⊂ F such that
(S0) 1 ∈ S;
(S1) a, b ∈ S ⇒ a+ b ∈ S;
(S2) a ∈ S ⇒ −a ∈ S;
(S3) a, b ∈ S ⇒ ab ∈ S;
(S4) a ∈ S ⇒ a−1 ∈ S.

If S is a subfield of F , we write S ≤ F .

Remark 1. Properties (S0) through (S4) imply that a subfield of F is a subset
of F which is itself a field.

Problem 1. Let F be a field and S be a collection of subfields of F .
Show that ∩S ≤ F .

Definition 3. Let A ⊂ F . The subfield of F generated by A, denoted by gfF (A),
is the intersection of all subfields of F which contain A.

If S is a subfield of F and A ⊂ F . let S(A) denote the subfield of F generated
by S ∪A. If A = {α1, . . . , αn} is finite, let S(α1, . . . , αn) = S(A). In particular,
if a ∈ F , let S(a) = S({a}).
Remark 2. Every subfield of C contains Q, so every subfield generated by a
subset of C contains Q.

Example 1. Let α =
√

2. Then

Q(α) = {a+ bα | a, b ∈ Q}.
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2. Polynomials

Definition 4. Let F be a field. A polynomial over F is a function f : F → F
of the form

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n,

where n is a nonnegative integer and ai ∈ F for i = 1, . . . , n, with an 6= 0 (unless
f(X) = 0). We call the variable X an indeterminate.

The number n is called the degree of f , and is denoted by deg(f), The elements
ai are called the coefficients of f .

The number an is called the leading coefficient. We say that f is monic if
an = 1.

The element a0 is called the constant coefficient. The polynomials of degree
zero are called constants, and are identified with the elements of the field F . By
convention, deg(0) = −∞.

The set F [X] is closed under addition, subtraction, and multiplication.

Proposition 1 (Division Algorithm for Polynomials). Let F be a field and let
f, g ∈ F [X]. Then there exist polynomials q, r ∈ F[X] such that

g = qf + r such that deg(r) < deg(f).

If f and g are monic, then q and r may be chosen to be monic or zero.

Proof. Without loss of generality, assume that f and g are monic. Let

S = {h ∈ F [X] | h = g − qf for some monic q ∈ F [X]}.
Clearly S is nonempty; let r ∈ S be a polynomial of minimal degree in S, so
that r = g − qf for some monic q ∈ F [X]. Then g = qf + r.

We claim that deg(r) < deg(f), To see this, let k = deg(r) − deg(f), and
assume that k ≥ 0. Then Xk ∈ F [X], and h = r −Xkf = g − (q −Xk)f ∈ S is
a monic polynomial of degree less than that of r, contradicting the selection of
r. �

Definition 5. Let F be a field and let f, g ∈ F [X] We say that g is divisible by
f , or that f is a factor of g, or that f divides g, and write f | g, if there exists
k ∈ F [X] such that g = fk. We see that f divides g if and only if the remainder
upon division of g by f is r = 0.

Definition 6. Let F be a field, f ∈ F [X], and α ∈ F . If α ∈ F , we say that α
is a zero of f if f(α) = 0. In this case, we say that f annihilates α.

Proposition 2 (Remainder Theorem). Let F be a field, f ∈ F [X], and α ∈ F .
Let h(X) = (X − α) ∈ F [X]. Write f = hq + r, where deg(r) < deg(h). Then
r ∈ F , and f(α) = r.

Proposition 3 (Factor Theorem). Let F be a field, f ∈ F [X], and α ∈ F . Let
h(X) = (X − α) ∈ F [X]. Then h | f if and only if f(α) = 0.

Proposition 4. Let F be a field and let α ∈ F . Suppose that g = fq for some
f, g, q ∈ F [X], and that g(α) = 0. Then either f(α) = 0 or q(α) = 0.
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Definition 7. Let f, g ∈ F [X]. A greatest common divisor of m and n, denoted
gcd(m,n), is a monic d ∈ F [X] such that

(a) d | f and d | g;
(b) If e | f and e | g, then e | d.

Proposition 5 (Euclidean Algorithm for Polynomials). Let f, g ∈ F [X]. Then
there exists d ∈ F [X] such that d = gcd(m,n), and there exist s, t ∈ F [X] such
that

d = sf + tg.

If f and g are monic, we may choose s and t to be monic.

Proof. Without loss of generality, assume that f and g are monic. Let

S = {h ∈ F [X] | h = sf + tg for some monic s, t ∈ F [X]}.
Clearly S is nonempty; select d ∈ S of minimal degree, so that d = sf + tg for
some monic s, t ∈ F [X].

Now f = qd + r for some monic q, r ∈ F [X] with deg(r) < deg(d). Then
f = q(sf + tg) + r, so r = (1− qs)f + (qt)g ∈ S. If r is nonzero, this contradicts
the selection of d; thus r = 0, which shows that d | f . Similarly, d | g.

If e | f and e | g, then f = ke and g = le for some k, l ∈ F [X]. Then
d = ske+ tle = (sk + tl)e. Therefore e | d. This shows that d = gcd(m,n). �

Definition 8. Let F be a field and let f ∈ F [X]. We say that f is irreducible
over F if whenever f = gh for some g, h ∈ F [X], either deg(g) = 1 or deg(h) = 1.

Example 2. If deg(f) ∈ {2, 3}, then f is irreducible over F if and only if f has
no zero in F .

3. Field Extensions

Definition 9. A field extension E/F consists of a field E which contains a field
F .

Definition 10. Let E/F be a field extension, and let α ∈ E. We say that
α is algebraic over F if there exists a nonzero polynomial f ∈ F [X] such that
f(α) = 0. Otherwise, we say that α is transcendental over F .

Proposition 6. Let E/F be a field extension and let α ∈ E be algebraic over
F . Then there exists a unique monic irreducible polynomial f ∈ F [X] such that
f(α) = 0.

Proof. Since α is algebraic over F , there exists some polynomial in F [X] which
annihilates α. Let f ∈ F [X] be a nonzero polynomial of minimal degree which
annihilates α. Clearly f is irreducible, since it is of minimal degree. We may
divide by the leading coefficient to see that we may select f to be monic. Now
suppose that g is another monic polynomial of minimal degree which annihilates
α. We have deg(f) = deg(g). Then deg(f − g) < deg(f) = deg(g). Since f is of
minimal degree among nonzero polynomials which annihilate α, we must have
f − g = 0. Thus f = g, and f is unique. �

Definition 11. Let E/F be a field extension and let α ∈ E be algebraic over
F . The minimum polynomial of α over F , denoted minpoly(α/F ), is the unique
monic irreducible polynomial which annihilates α. The degree of α over F ,
denoted deg(α/F ), is equal to deg(minpoly(α/F )).
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Definition 12. Let E/F be a field extension and let α ∈ E. The evaluation map
on F [X] with respect to α is the function ψα : F [X] → E defined by f 7→ f(α).
The image of the evaluation map is denoted F [α]; that is,

F [α] = ψα(F [X]) =
{ k∑

i=0

aiα
i | k ∈ N, ai ∈ F

}
⊂ E.

Proposition 7. Let E/F be a field extension and let α ∈ E. If α is transcen-
dental over F if and only if ψα is injective.

Proof. Suppose that α is transcendental. Let f, g ∈ F [X] so that f(α) and g(α)
are arbitrary members of F [α]. Suppose that f(α) = g(α); then (f − g)(α) = 0,
so (f − g) is a polynomial which annihilates α. Since α is transcendental, we
must have f − g = 0, so f = g.

On the other hand, if α is not transcendental, it is algebraic; let f =
minpoly(α/F ). Then ψα(f) = ψα(0), and ψα is not injective. �

Proposition 8. Let E/F be a field extension and let α ∈ E. Let F [α] =
ψα(F [X]) denote the image of F [X] under the evaluation map. Let α is algebraic
over F and deg(α/F ) = n, then F [α] = S, where

S =
{ n−1∑

i=0

aiα
i | ai ∈ F

}
;

moreover, F [α] is a field, and F [α] = F (α).

Proof. Clearly all elements of the form
∑n−1

i=0 aiα
i are in F [α], so S ⊂ F [α].

Let f ∈ F [X] be the minimum polynomial of α over F . Let g ∈ F [X]; then
g(α) is an arbitrary member of F [α]. Now g(X) = f(X)q(X) + r(X), where
deg(r) < deg(f). By the remainder theorem, g(α) = f(α)q(α)+r(α) = r(α) ∈ S.

Since F [X] is closed under addition, subtraction, and multiplication, so is
F [α]. We only need to show that f(α) if invertible for f(α) 6= 0.

Let β ∈ F [α]. Then β = g(α) for some g ∈ F [X]; by the division algorithm,
we may select g so that deg(g) < deg(f). Since f is irreducible, we see that
gcd(f, g) = 1, so there exist s, t ∈ F [X] such that sf+tg = 1. Then t(α)g(α) = 1,
so β−1 = t(α), and β is invertible. �
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4. Vector Spaces

Definition 13. Let F be a field. A vector space over F is a set V together with
operations

+ : V × V → V and · : F × V → V

satisfying
(V1) v + w = w + v for all v, w ∈ V ;
(V2) v + (w + x) = (v + w) + x for all v, w, x ∈ V ;
(V3) there exists 0V ∈ V such that v + 0V = v for all v ∈ V ;
(V4) for every v ∈ V there exists w ∈ V such that v + w = 0V ;
(V5) 1F · v = v for every v ∈ V ;
(V6) (ab)v = a(bv) for every v ∈ V and a, b ∈ F ;
(V7) (a+ b)v = av + bv for every v ∈ V and a, b ∈ F .
(V8) a(v + w) = av + aw for every v, w ∈ V and a ∈ F ;

Problem 2. Let V be a vector space over a field F . Let a ∈ F and x ∈ V .
(a) Show that 0F · x = 0V .
(b) Show that a · 0V = 0V .
(c) Show that (−1F ) · x = −x.

Definition 14. Let V be a vector space over a field F .
A subspace of V is a subset W ⊂ V such that

(W0) 0V ∈W ;
(W1) x, y ∈W ⇒ x+ y ∈W ;
(W2) a ∈ F, x ∈W ⇒ ax ∈W .

If W is a subspace of V , this is denoted by W ≤ V .

Remark 3. Properties (W0) through (W2) imply that a subspace of V is a
subset of V which is itself a vector space.

Problem 3. Let V be a vector space over a field F and let W be a collection of
subspaces of V .
Show that ∩W ≤ V .

Definition 15. Let V be a vector space over a field F and let A ⊂ V . The
subspace of V generated by A, denoted gvV (A), the intersection of all subspaces
of V which contain A. This subspace is called the span of A.

Problem 4. Let V be a vector space over a field F and let A = {v1, . . . , vn}.
Show that

gvV (A) =
{ n∑

i=1

aivi | ai ∈ F
}
.
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5. Vector Space Dimension

Definition 16. Let V be a vector space over a field F . Let B ⊂ V .
We say that B spans V is for every x ∈ V there exist a1, . . . , an ∈ F and

v1, . . . , vn ∈ B such that x =
∑n

i=1 aivi.
We say that B is linearly independent if whenever v1, . . . , vn ∈ B are distinct

elements of B and a1, . . . , an ∈ F ,
n∑

i=1

aivi = 0 ⇒ ai = 0 for i = 1, . . . , n.

We say that B is a basis for V if B spans V and is linearly independent.

Problem 5. Let V be a vector space over a field F and let X ⊂ V span V .
Show that V = gvV (X).

Problem 6. Let V be a vector space over a field F and let X ⊂ V be linearly
independent. Let v ∈ X. Show that gvV (Xr{v}) is a proper subset of gvV (X).

Problem 7. Let V be a vector space over a field F and let X ⊂ V span V .
Show that there exists a subset B ⊂ X such that B is a basis for V .

Problem 8. Let V be a vector space over a field F and let X ⊂ V be linearly
independent. Show that there exists a subset Y ⊂ V such that X ∪ Y is a basis
for V .

Problem 9. Let V be a vector space over a field F . Let A = {v1, . . . , vm} and
B = {w1, . . . , wn} be bases for V . Show that m = n.

Definition 17. Let V be a vector space over a field F . If V has a basis containing
n elements, where n ∈ N, we say that V is finite dimensional, and that n is the
dimension of V ; this is denoted by dim(V ) = n.

Problem 10. Let V be a vector space over a field F and let U,W ≤ V . Set
U +W = {u+ w | u ∈ U,w ∈W}.
(a) Show that U +W ≤ V .
(b) Show that dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Problem 11. Let F be a field and let n be a positive integer. Let Fn denote
the cartesian product of F with itself n times. Show that Fn is a vector space
over F of dimension n.

Observation 1. Let E/F be a field extension. We may add the elements of E,
and multiply them by elements of F . In this way, we may view E as a vector
space over F .

Definition 18. Let E/F be a field extension. The degree of the extension,
denoted [E : F ], is its dimension of E as a vector space over F .
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6. Types of Extensions

Definition 19. Let E/F be a field extension.
We say that E/F is a primitive extension if E = F [α] for some α ∈ E which

is algebraic over F .
We say that E/F is a finite extension if [E : F ] <∞.
We say that E/F is a algebraic extension if every element of E is algebraic

over F .

Proposition 9. Let E/F be a primitive extension such that E = F[α], where α
is algebraic over F with minpoly(α/F ) = f ∈ F [X]. Let n = deg(f). Then the
set

B = {1, α, . . . , αn−1}
is a basis for E/F , and in particular, [E : F ] = n.

Proof. Since E = F [α], that B spans E is a direct consequence of Proposition
??. To see that B is linearly independent, let

a0 · 1 + a1α+ · · ·+ anα
n−1 = 0

be a dependence relation. Then α is a root of the polynomial
∑n−1

i=1 aiX
i. Since

this polynomial has lower degree than f , it must be the zero polynomial, so
ai = 0 for every i. This shows that B is linearly independent over F . �

Proposition 10. Let E/F be a finite extension. Then E/F is an algebraic
extension.

Proof. Let [E : F ] = n, and let α ∈ E. The set S = {1, α, α2, . . . , αn} contains
n+ 1 elements, and so it must be linearly dependent over F . Thus there exists
a nontrivial dependence relation

a0 · 1 + a1α+ · · ·+ anα
n = 0.

Let f(X) = a0 + a1X + . . . anX
n. Then f(α) = 0, so α is algebraic over F . �

Proposition 11. Let K/E and E/F be finite field extensions of dimension n
and m respectively. If {z1, . . . , zn} is a basis for K/E and {y1, . . . , ym} is a
basis for K/F , then {yizj | i = 1, . . . ,m; j = 1, . . . , n} is a basis for K/F . In
particular, K/F is finite, and

[K : F ] = [K : E][E : F ].

Proof. Let α ∈ K. Then α is in the span of {zj}, so α =
∑n

j=1 bjzj for some
bj ∈ E. Since each bj ∈ E, it is in the span of {yi}, so bj =

∑m
i=1 aijyi for some

aij ∈ F . Thus

α =
n∑

j=1

[ m∑
i=1

aijyi

]
zj =

n∑
j=1

m∑
i=1

aijyizj .

Thus {yizj} spans K.
Now consider a dependence relation

∑n
j=1

∑
i i = 1maijyizj = 0. Collect like

terms to obtain
∑n

j=1

[ ∑m
i=1 aijyi

]
zj = 0. Since {zj} is linearly independent,

we must have
∑n

i=1 aijyi = 0 for every j. But since {yi} is linearly independent,
this implies that aij = 0 for every i and j. Thus {yizj} is linearly independent
over F . �
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7. Field of Constructible Numbers

Definition 20. Let S ⊂ C and set z ∈ C. We say that a line L ⊂ C is
constructible from S if L ∩ S contains at least two points. We say that a circle
C ⊂ C is constructible from S if the center of C is in S and C ∩ S is nonempty.
We say a point z ∈ C is constructible from S if one of the following conditions
holds:
(C0) z ∈ S;
(C1) z ∈ L1 ∩ L2, where L1 and L2 are lines constructible from S;
(C2) z ∈ L1 ∩ C1, where L1 is a line and C1 is a circle constructible from S;
(C3) z ∈ C1 ∩ C2, where C1 and C2 are circles constructible from S.

Let C(S) be the set of points which are constructible from S.
Set C0(S) = S and inductively set Cn+1(S) = C(Cn(S)). Let S = {0, 1} ∈ C,

and define
K = ∪∞n=0Cn(S);

members of K are called constructible numbers.

Proposition 12. Let a, b ∈ K. Then
(K1) a+ b ∈ K;
(K2) −a ∈ K;
(K3) ab ∈ K;
(K4) a−1 ∈ K if a 6= 0;
(K5) ±

√
a ∈ K;

(K6) a ∈ K;
Thus the set K is a subfield of C which is closed under square roots and conju-
gation.

Proof. Note that a+b is the fourth point in a parallelogram with points a, 0, and
b; we have seen that this construction is possible. Also, −a is the intersection
of the line through 0 and a with the circle centered at 0 through a, so −a is
constructible.

Let a = reiθ be the polar expression of a. Now r = |a|; this may be constructed
by intersecting the real axis with the circle centered at 0 through a.

Now let a = reiθ and b = seiγ ; then ab = rsei(θ+γ). We have seen that if we
can construct lengths r and s, then we can construct the length rs. We only
need to show that we can construct the angle θ + γ. Try to do this geometri-
cally; otherwise it will follow algebraically from the similar facts for the real and
imaginary parts of a and b.

Next we describe how to construct the conjugate a of a. Form the line per-
pendicular to the real axis and passing through a. Intersect this line with the
circle centered at 0 through a. One point of intersection is a, the other is a.

Consider that a−1 = 1
r e
−iθ. We have seen that we can construct 1

r , and we
can bisect any angle. Thus a−1 ∈ K. �
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Proposition 13. Let z ∈ C. Then z ∈ K if and only if <z ∈ K and =z ∈ K.
In particular, i is constructible.

Proof. Note that the real axis is immediately constructible from {0, 1}, and the
imaginary axis is constructible as the perpendicular to the real axis through 0.

Suppose that z ∈ K. Then |z| is the positive real number obtained as the
intersection of real line and the circle centered at 0 and through z. Then |z|2

is constructible since K is a field, and since zz = |z|2, we see that z = |z|2
z

is constructible. Thus <z = 1
2 (z + z) is constructible, and =z = z − <z is

constructible.
Suppose that <z and =z are constructible. Now i is the intersection of the

unit circle and the imaginary axis, so i is constructible. Thus z = <z + i=z is
constructible. �

8. Constructed Fields

Definition 21. Let z = (z1, . . . , zn) be an n-tuple of complex numbers. We say
that z is constructed if z1 = i and zi+1 ∈ C(Q[z1, . . . , zi]) for i = 1, . . . , n. If
F ≤ C, we say that F is constructed if F = C[z1, . . . , zn] for some constructed
tuple (z1, . . . , zn).

Proposition 14. Let F ≤ C and z ∈ C. Suppose i ∈ F . Then z ∈ F if and
only if <z,=z ∈ F . In this case, z ∈ F and |z|2 ∈ F .

Proof. Let z = x+ iy, where x, y ∈ R. If x, y, i ∈ F , then obviously z ∈ F .
Suppose z, i ∈ F ; then z − iz ∈ F . Now z − iz = (x − ix) − (y − iy) = (x −

y)(1−i). Since i ∈ F , 1−i ∈ F , so x−y ∈ F . Now (x−y)−z = y−iy = y(1−i),
so y ∈ F . Thus x ∈ F . Now z = x− iy ∈ F , so |z|2 = zz ∈ F . �

Proposition 15. If α ∈ K, then there exists a constructed tuple (z1, . . . , zn)
such that α = zn.

Proof. It follows from the definition of constructibility that α can be constructed
from finitely many stages from the set {0, 1} ⊂ Q. The result follows from
this. �

Proposition 16. Let E/F be a field extension with [E : F ] = n, and let α ∈ E.
Then deg(α/F ) divides n.

Proof. We know that [F [α] : F ] = deg(α/F ) = deg(minpoly(α/F )). By the
product of degrees formula, [E : F ] = [E : F [α]] · [F [α] : F ]. The result follows.

�
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Proposition 17. Let E be a constructed field. Then [E : Q] is a power of two.

Proof. Since E is a constructed field, there exists a constructed tuple (z1, . . . , zn),
with z1 = i, such that E = Q[z1, . . . , zn], with zi+1 ∈ Q[z1, . . . , zi].

Let Fi = Q[z1, . . . , zi] for i = 1, . . . , n; note E = Fn. We proceed by induction
on n.

For n = 1, we have z1 = i. Now minpoly(i/Q) = X2 + 1, and deg(z1/Q) = 2,
so the proposition is true in this case.

Now suppose that n > 1, and let F = Fn−1 and α = zn. By induction,
[F : Q] is a power of two. We also know that i ∈ F , so z ∈ F if and only if
<z,=z, z, |z|2 ∈ F .

Since α is constructible from F , it is the intersection of lines and circles given
by points in F .

Case 1: α is the point of intersection of two lines given by F .
Note that the slope of a line through two points in F is also in F ; let y = m1x+b1
and y = m2x+ b2 be lines which intersect at α, where m1, b1,m2, b2 ∈ F . Then
the point of intersection is the complex number α = b2−b1

m1−m2
+ m1b2−b1m2

m1−m2
i, whose

real and imaginary parts are in F , so α ∈ F in this case, and deg(α/F ) = 1.
Case 2: α is a point of intersection of a line and a circle given by F .

Let y = mx + b and (x − h)2 + (y − k)2 = r2 be the equations of the line and
the circle. Now m, b ∈ F . Since w = h+ ki is the center of the circle, h, k ∈ F .
Also there exists a point z ∈ C whose distance from w is r, so r = |w − z| ∈ F .
Substitution gives (x−h)2 +(mx+ b−k)2− r2 = 0; this is a quadratic equation
whose solution is of the form x = A+B

√
D, where A,B,D ∈ F . Let y = mx+b;

now α = x+ yi, and since x, y ∈ F [
√
D], so is α.

Case 3: α is a point of intersection of two circles given by F .
Subtracting the equations of the circles cancels both the x2 and the y2 terms,
producing a linear equation in x and y. Use this in combination with the equation
of one of the circles to reduce to Case 2. �

Proposition 18. Let α ∈ C be constructible. Then there exist p ∈ N such that
deg(minpoly(α/Q)) = 2p.

Proof. If α is constructible, there exists a constructed tuple (z1, . . . , zn) such
that α = zn. Let E = Q[z1, . . . , zn]; then α ∈ E and [E : F ] is a power of two.
By a previous proposition, deg(α/Q) divides [E : F ], so it is also a power of
two. �

Proposition 19. It is impossible to double a cube.

Proof. Start with a cube whose sides have length one. To construct a cube with
double the volume, one must be able to construct an edge of this cube; this
requires the constructibility of the number α = 3

√
2.

The minimum polynomial of α over Q is X3 − 2, so deg(α/Q) = 3. Since 3 is
not a power of 2, α is not constructible. �

Department of Mathematics and CSCI, Southern Arkansas University
E-mail address: plbailey@saumag.edu


